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1 Introduction

Given positiveintegersry, ra, ... 7, adci, ca, . .. ¢, 1€t I(r, ¢) betheset of m x n
arrayswith nonnegative integer entriesand row sumsr, r, . . . r,, respectively and
columnsums ¢y, ¢z, . . . ¢, respectively. Elementsof /(r, ¢) are called contingency
tables with these row and column sums.

We consider two related problems on contingency tables. Given rq,r»,...r,, and

C1,C2,...Cp,
1) Determine |I(r, c)|.
2) Generate randomly an element of /(r, ¢), each with probability 1/|1(r, ¢)|.

The counting problem is of combinatorial interest in many contexts. See, for
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example, the survey by Diaconis and Gangolli [5]. We show that even in the case
when m or n is 2, this problem is #P hard.

The random sampling problem is of interest in Statistics. In particular, it comes
up centrally in an important new method formulated by Diaconis and Efron [4]
for testing independence in two-way tables. (See also Mehta and Patel [21] for a
more classical test of independence). We show that this problem can be solved
in approximately in polynomial time provided the row and column sums are
sufficiently large, in particular, provided »; € Q(n?m) and ¢; € Q(m?n). This
then implies under the same conditions, a polynomial time algorithm to solve the
counting problem (1) approximately.

The algorithm we give relies on the random walk approach, and is closely related
to those for volume computation and sampling from|og-concave distributions[ 10,
2,9, 20, 15, 22].

2 Prdiminariesand Notation

The number of rows will always be denoted by m and the number of columns
by n. We will let N denote (» — 1)(m — 1). For convenience, we number the
coordinates of any vector in R"™ by apair of integers (i, j) or just «j where: runs
from 1 through m and 5 from 1 through n. Suppose v isan m vector of reals (the
row sums) and v is an n vector of reals (the column sums). We define

Viwo)={z e R"™ > a;=wfori=212...m; > ay=vjforj=12...n}
j i



V(u, v) can be thought of asthe set of real m x n matrices with row and column
sums specified by « and v respectively. Let

P(u,v) =V(u,v)N{x 12z, >0fori =1,2,...m, j=21,2,...n}.

We call such apolytope a*contingency polytope”.
Then, I(u,v) isthe set of vectorsin P(u, v) with al integer coordinates.

Notethat the abovesetsareall trivialy empty if 3=, u; # 3=, v;. Sowewill assume
throughout that 3=, u; = 3=, v;.

We will need another quantity denoted by a(w,v) defined for w,v satisfying
u; > 2nYiand v; > 2mV; .

a(u,v) = max
27]

ui +2n v+ 2m (n=0)(m—1)
u; —2n’ v; —2m '

We will abbreviate a(u, v) to o when «, v are clear from the context. An easy

caculation shows that if «; is Q(nzm) Vi andv; is Q(nmz) vy, then o isO(1).

Oninput u, v (we assume that u; > 2nV: and v; > 2mVY}), our algorithm runs for
time bounded by «(u,v) times a polynomial inn ,m ,max;;(logu,,logv;), and
(1/¢) wheree will bean error parameter specifying the desired degree of accuracy.
(See section 5, first paragraph for a description of the input/output specifications
of the algorithm.)

3 Hardness of counting

We will show that exactly counting contingency tables is hard, even in a very
restricted case. We will use the familiar notion of # P-compl etenessintroduced by
Valiant [25].



Theorem 1 The problem of determining the exact number of contingency tables
with prescribed row and column sumsisis#P-complete, eveninthe 2 x n case.

Proof It is easy to see that this problemisin #P. We simply guess mn integers x;;
in the range [0, /| (where .J is the sum of the row sums) and check whether they
satisfy the constraints. The number of accepting computations is the number of
tables.

For proving hardness, weproceed asfollows: Givenpositiveintegersas, a, . . ., a,_1, b,
itisshownin [8] that it is#P-hard to compute the (n — 1)-dimensional volume of
the polytope

n—1
Say;<b, 0<y;<1(G=12...,n—1).
7=1

It follows that it is #P-hard to compute the (n — 1)-dimensional volume of the
polytope

Say;=b, 0<y; <1(j=12...,n),
j=1

where a,, = b. Hence, by substituting x1; = a,y,, x2; = a;(1—y;), that it follows
that it is #P-hard to compute the (n — 1)-dimensional volume of the polytope
P(r,¢) (with 2 rows and » columns) where

n—1
r=(b,> a;), c=(a1,...,a,-1,b).
7=1

Now the number »(r,c) of integer points in P(r,¢) is clearly the number of
contingency tables with the required row and column sums. But, for integrd
r,c, P(r,c) is a polytope with integer vertices. (It is the polytope of a2 x n
transportation problem [11].) Consider the family of polytopes P(tr, tc) for



t = 1,2,.... Itiswdl known [12, Chapter 12] that the number of integer
pointsin P(tr,tc) will be a polynomial in ¢, the Ehrhart polynomial, of degree
(n — 1), the dimension of P(r,c). Moreover the coefficient of +"~* will be the
(n — 1)-dimensional volume of P(r,c). It isaso straightforward to show that
the coefficients of this polynomial are of size polynomial in the length of the
description of P(r, ¢).

Suppose therefore we could count the number of 2 x » contingency tables for
arbitrary r, c. Then we could compute v(r, ¢) for arbitrary integral r, c. Hence we
could compute v(tr, te) for t = 1,2, ..., n and thus determine the coefficients of
the Ehrhart polynomial. But thiswould allow usto compute thevolumeof P(r, ¢),
which we have seen is a #P-hard quantity.

a

Remark If both n, m are fixed, we can apply a recent result of Barvinok’s [3]
(that the number of lattice points in a fixed dimensional polytope can be counted
exactly in polynomial time) to compute |/(w, v)|. Diaconisand Efron [4] give an
explicit formulafor |/ (u, v)|incasen = 2. Their formulahas exponentially many
terms (as expected from our hardness result). Mann has a similar formula for
n = 3. Sturmfels demonstrates a structural theorem which allows for an effective
counting scheme that runs in polynomial time for », m fixed.[24] Sturmfels has
used the technigque to count 4 x 4 contingency tablesin the literature. We will, in
later papers, discuss our work counting 4 x 4 and 5 x 4 contingency tables.



4 Sampling Contingency tables : Reduction to con-
tinuous sampling

This section reduces the problem of sampling from the discrete set of contingency
tables to the problem of sampling with near-uniform density from a contingency
polytope.

To this end, we first take a natural basis for the lattice of all integer pointsin
V(u,v) and associate with each lattice point a parallel epiped with respect to this
basis. Then we produce a convex set P® which has two properties : a) each
parallelepiped associated with a point in 7(u,v) is fully contained in P® and b)
the volume of P® divided by the total volume of the parall€el epipeds associated
with pointsin /(u,v) is a most a(r,¢). Now the agorithm is smple : pick a
random point y from P with near uniform density (thiscan be donein polynomial
time), find the lattice point = in whose parallelepiped y liesand accept « if itisin
I(u,v) [acceptance occurs with probability at least 1/a(u, v) ]; otherwise, reject
and rerun. The volume of each parallelepiped is the same, so the probability
distribution of the « in /(w,v) is near uniform. This general approach has been
used also for the simpler context of sampling from the 0-1 solutions to a knapsack
problem [13].

[While P® is a convex set and by the general methods, we can sample from it
in polynomia time with near uniform density, it will turn out that P® is aso
isomorphicto acontingency polytope. Inthe next section, we show how to exploit
thisto get a better polynomial time algorithm than the general one.]

We will have to build up some geometric facts before producing the P©.



Let [ bethelattice:

{e eR" > 2 =0fori=1,2,...m; > z; =0forj =1,2,...n; z;; € Z}.
J i

Forl1<:<m-1and1l<j <n-—1letb(ij) bethevector in R"" given by
b(ig)y; =1, b(2j)ix1; = —1, b(27)ij41 = —1, b(27)iy1,41 = Land b(zj) = 0
for k[ other than the 4 above.

Any vector = in V(0, 0) can be expressed as alinear combination of the b(:j)’sas
follows (the reader may check this by direct calculation)

v = m_lnf (z_jz :1;]) b(kL). (1)

It is also easy to check that the b(ij) are all linearly independent. This implies
that the subspace V/(0, 0) has dimension (n — 1)(m — 1) and so does the affine
set V(u,v) whichisjust atrandate of V/(0,0). Also, we seethat if = isan integer
vector, then the above linear combination has integer coeffients; so, the b(:;) form
abasis of thelattice U.

It is easy to see that if u, v are positive vectors, then the dimension of P(u,v) is
also N. To seethis, it sufficesto come up with an = € R™” with row and column
sums given by «, » and with each entry z;; strictly positive because then we can
add any small real multiples of the b(:y) to  and still remainin P(w,v). Such
an x is easy to obtain : for example, we can choose 11, x12, . . . x1, tO satisfy
0 < x1; < min(ug,v;) and summing to ;. Then we subtract this amount from
the column sums and repeat the process on the second row etc.

We will denote by Vol( P(u,v)) the (V dimensional) volume of P(u,v).

Obvioudly, if either « or v has anon-integer coordinate, then 7 (u, v) isempty.

7



Lemmal : If p, g are m vectorsof positiverealsand s, ¢ are n vectors of positive
realswith ¢ > p and ¢ > s (componentwise), then

VoI(P(q, 1)) = MOI(P(p, ).

Proof By induction on the number of coordinates of (¢ ¢) that are strictly greater
than the corresponding coordinates of (p s). After changing row and column
numbers if necessary, assume without loss of generdlity that ¢; — p; is the least
among all POSITIVE componentsof (¢ t) — (p s). After permuting columns if
necessary, we may also assume that we havet; — s; > 0. Let P, = P(p,s). Let
P, be defined by

Py ={x € R™ a1 > —(q1 — p1); xi; > Ofor (15) # (11)} N V(p, s).

Let p’ be an m—vector defined by p| = ¢1;p, = pifore = 2,3,...m. Lets
be defined by s7 = s1+ q1 — p1;s’ = s;forj = 2,3,...n. Denote by P the
set P(p',s'). Then P, and P3 have the same volume as seen by the isomorphism
11 — 11+ (g1 — p1). Clearly, P, contains P;. Also the row sums and column
sumsin P are no greater than the corresponding row and column sumsin (¢ ¢).
Applying the inductive assumption to P; and P(q,t), we have the lemma. O

Let u, v befixed and consider V(u,v). Let
Ulu,v) = V(u,0) NZ"™.

We may partition V' (u, v) into fundamental parallelepipeds, one corresponding to
each point of U(u,v). Namely,

V(u,v) = UxEU(u,v){x—l'Z )\Z]b(lj) 0L )\ij <l1lfori=21,2...m; =12, ..

]



Wecal {z + 37, Ai;b(2g) :0< Ay <1fore =1,2,...m; y=1,2,...n}, “the
parallelepiped” associated with = and denote it by F'(x).

Claim : Forany x € I(u,v),and for any y belongingto F'(z) wehavez;; — 2 <
Yij < Ty + 2.

Proof : Thisfollowsfrom the fact that at most four of the b(ij) 's have anonzero
entry in each position and two of them have a +1, the other two a-1. O

Lemma 2 : For nonnegative vectorsu € R™ andv € R* andany ! € R™”, et
P(u,v,l) = V(u,v)N{x € R" 1 a; > 1;}.
Then,

(i) for any = in I(u, v), we have F'(z) C P(u,v,—2) where 2 is the nm-vector of
al2’s.

(i) P(u,v,4+2) € Uperumd'(z). [P(u,v,—2) will play the role of P® in the
brief description of the algorithm given earlier.]

Proof : (i) Since z isin [(u,v), we have z;; > Oand so forany y € F(z), we
have y;; > —2 proving (i). For (ii), observe that for any y € V(u,v), thereisa
uniquex € U(u,v)suchthaty € F(x). If y;; > 2, thenwe must have z;; > 0, sO
the corresponding = belongsto /(u, v) as claimed.

Lemma3 : For v € R™ andv € R" with w; > 2n for all s and v; > 2m for all
7, we have

VOl (Uperwn f'(2) o 1
\ol(P(u,v,—2)) ~ a(u,v)’



Proof : By (ii) of thelemmaabove, Vol (U, r(.,.) F'(x)) isatleast Vol ( P(u, v, +2)).
But P(u,v,+2)isisomorphicto P(u—2nl,v —2m1l) wherel’sarevectorsof all
1’s of suitable dimensions as seen from the substitution z}; = x;; — 2. Similarly,
we have that P(u,v, —2) isisomorphicto P(u + 2nl, v + 2ml). Let p = oMV,
Consider theset p P(u—2nl,v—2ml) = {px : v € P(u—2nl,v—2m1)}. This
is precisely the set P(p(u — 2nl), p(v — 2m1)). By the definition of p, we have
plu;—2n) > u;+2nVieand p(v; — 2m) > v; +2mV;y. Soby lemmal, thevolume
of pP(u — 2nl,v — 2m1l) is a least the volume of P(u + 2nl,v + 2ml). But
pP(u—2nl v—2ml)isadilationof the N dimensional object P(u—2nl, v—2ml)
by afactor of p and thus has volume precisely equal to p”¥ = a times the volume
of P(u — 2nl,v — 2m1) completing the proof.

a

Since P(u,v,—2) isisomorphic to P(u 4+ 2nl,v 4+ 2ml), the essential problem
we haveis one of sampling from a contingency polytope with uniform density.

Proposition 1 For every = € U(r,c¢), we havevol y(£'(z)) = 1.

Proof : Notethat if = = Y727 52721 \i;b(ij), thenwe have z;; = A;; — A1, —
Aij—1 + Ai—1;-1 (Where if one of the subscripts is 0, we take the A to be zero
too. Thusforeach:, 1 <: <m —1andeachj, 1 < j; <n — 1, the“height”
of the parallelepiped F'(x) in the direction of z;; perpendicular to the “previous’
((a,b) < (1,5)ifa <iandb < jand(a <io0rb< j))coordinatesis 1 proving
our proposition.
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5 TheAlgorithm

We now describe the algorithm which given row sums w1, ua, . . . u,, and column
sums vy, vy, . . . v, and an error parameter ¢ > 0, draws a multiset W of samples
from 7 (u, v) (the set of integer contingency tables with the given row and column
sums) with the following property :

if g : I(u,v) — Risany function, then the true mean ¢ of ¢ and the sample mean
g (defined below) satisfy
E((|7 — a1)®) < €5

where

ZwEI(u,v) g(w)

o Zuew 9(0) e g(0) — gl

.g_: a pu—
g |W| w,z€l(u,v)
Asstated in thelast section, wewill first draw samplesfrom P(u + 2nl, v+ 2ml).

Weletr = u+2rlandc = v + 2ml.
We assume that u; > 2nV: and v; > 2mV; throughout this section.

Thefunction g often takesonvaluesO or 1. Thisissointhe motivating application
described by Diaconis and Efron [4] where one wants to estimate the proportion
of contingency tables that have (the so-called) \? measure of deviation from the
independent greater than the observed table. So, in this case, go will be 1 for a
table if its y2 measure is greater than that of the observed, otherwise, it will be
zero. The evaluation of ¢ for a particular tableisin general smpleasitisin this
case.

At the end of the section, we describe how to use the sampling algorithm to
estimate |/ (u, v)|.

11



For reasons that will become clear later, we rearrange the rows and columns so
that

T1 T2 e e e Pl < Ty €1,C25 0o Cpl1 < €. 2

We assume the above holdsfrom now on. Anm x n tablez in P(r, ¢) isobviously
specified completely by its entriesin all but the last row and column. From this,
it is easy to see that P(r,c) isisomorphic to the polytope Q(r, c) in RV (recall
the notation N = (m — 1)(n — 1)) which is defined as the set of «+ satisfying the
following inequalities:

n—1 m—1 m—1n-1 m—1
Z l’ij S TZ'\V/Z Z l’ij S C]‘\V/] Z Z l’ij Z Z T, — Cy l’ij Z O
j=1 =1 =1 j=1 =1

In the above, aswell asin therest of the section,  will runthrough1,2,...m —1
and 5 will runthrough 1,2, ...n — 1 unless otherwise specified.

The algorithm will actually pick pointsin Q(r, ¢) with near uniform density. To
do so, the algorithm first scales each coordinate so that )(r, ¢) becomes “well-
rounded”. Let

pii= Min(——, —% yfori=1,2...m—1landj=12,...n— 1 (3)

n—1"m-—1

The scaling is given by

N
y; = —a;fore =12 ..m—-1landyj=21,2,...n — 1L 4
Pis

Thistransformation transformsthe polytope Q(r, ¢) toapolytope Q@) = QQ(r, ¢)
“iny space”. Notethat QQ(r, ¢) istheset of y that satisfy thefollowing constraints

1 . 1 )
N Zpijyij <rVi N Z/Oijyij < ¢,V (%)
J 7

12



1
ﬁzpzjyzj > Zri — ¢, yi; > 0.
2Y) 7

Instead of working in QQ(r, ¢), the algorithm will work with alarger convex set.
To describe the set, first consider the convex set P’(r, ¢) obtained from P(r, ¢) by
discarding the constraint x,,,, > 0. The corresponding set )'(r, ¢) in N spaceis
given by upper bounds on the row and column sums and nonnegativity constraints.
The scaling above transforms Q'(r, ¢) to the following set QQ’(r, ¢) :

QQ'(r,c) ={y: %Zﬂm‘ym‘ <rVi %me‘yij <¢Vji yi; =20 (6)

J 2
We will impose the following log-concave function ' : P'(r,¢) — Ry :

Flz) = Min(L Moy where M = 2("—L 4 ™ =1 ©

T'm Cn

which is 1 on P(r,¢) and falls off exponentially outside. The corresponding
functionon QQ' isgiven by :

G(y) — Min (17 BM(% Zm Pi]l/ij_ziri-l-cn)) ‘ (8)

We call a cube of the form {y : 0.4s;; < y;; < 0.4(s;; + 1)} in y Space where
s;; are all integers a “lattice cube” (it is a cube of side 0.4); its center p where
pi; = 0.4s;; + 0.2 will be called a lattice cube center (Icc). Let L be the set of
lattice cubes that intersect QQ'(r,c). We will interchangeably use L to denote
the set of lcc's of such cubes. (Note that the Icc itself may not be in QQ'.) If y
is an lcc, we denote by C'(y) the lattice cube of which it is the center. Note that
for a particular Icc y, it is easy to check whether it isin L - we just round down
all coordinates (to an integer multiple of 0.4) and check if the point so obtained
isin QQ'. In our agorithm, each step will only modify one coordinate of y; in

13



this case, by keeping running row and column sums, we can check in O(1) time
whether the new y isin L.

A simple calculation shows:

Proposition 2 : For any lccy and any = € C(y), we have e %8G(y) < Gi(z) <
GO'BG(y).

Now we are ready to present the algorithm. There are two steps of the algorithm of
which the first is the more important. Some details of execution of the algorithm
are given after the algorithm. In the second step, we may reject in one of three
places. If we do so, then, thistrial does not produce afinal sample.

14



The Algorithm

The first paragraph of this section describes the input / output behavior of the
algorithm. See Remark following the Theorem for the choice of 7§, 73.

|. Let T, 71 > 1. Their values are to determined by the accuracy needed.

Runtherandomwalk YD Y@ y(To+T1) with J, as state space described bel ow
for Tp + 14 steps starting at any state of L.

Il.for: = To+ 1to: = Top+ 71 do thefollowing :
a. Pick Z(® with uniform density from C'(Y)). Reject with probability 1 —

G(Z()
e~8G(Y(i)) .

[Re ect means end the execution for this:.]
b. Reect if Z) isnotin QQ(r, ¢).

c. Let pV) bethe pointin P(r,¢) corresponding to Z. If p(9) isina F'(w) for
some w € I(u,v), then add w) = w to the multiset W of samples to be output;
otherwise regject.

Random walk for step |

Step | isarandom walk on L. Two lcc 'sin L will be called “adjacent” if they
differ in one coordinate by 0.4 and are equal on all the other coordinates. The
transition probabilitiesfor the random walk for step | are given by :

1 . ! . .
Priy —y') = 5V Min (1, Gly )) for y,y' adjacent lcc’sin L

Pr(y — y') = Ofor y, v’ not adjacent and

15



Prly = y)=1— > Prly—=y).
v eIy}

This is an irreducible time-reversible Metropolis Markov Chain and from the
identity

Gly) Prly = ¢') = G(y) Pr(y’ — y),
it follows that the steady state probabilities, 7, exist and are proportional to G(-).

An execution of the random walk produces Y i = 1.2,... where Y(+D js
chosen from Y () according to the transition probababilities.

In the next section, we will use the results of Frieze, Kannan, Polson [[15]] to
show that the second largest absolute value of an eigenvalue of the Markov Chain
(we denote this quantity by 0) satisfies (see Theorem 3):

(1-0)"" < N*n +m —2)(35+ 0(1)),

where the o(1) term goes to zero asn + m, N — oo. As pointed out there, for
N > 10andn + m > 11, wehave (1 — 6)~1 < 36N*(n + m — 2). The quantity
1 — #iscalled the “spectral gap”.

The following theorem is proved using a result of Aldous [[1]]. It involves a
quantity A; whichisthelimiting probability of acceptance in the above agorithm.
A sequence of lemmas (4-7) is then used to bound A; from below. This lower
bound may be just plugged into the Theorem. See Remark below for a more
practical way to estimate A;.

Theorem 2 The multiset of samples W produced by the algorithm satisfies :

if g : I(u,v) — Risany function, with go = maX,, y¢r(u,v) 9(w) — g(z), and the

16



Zwel(u,v) g(w)

mean g = (o)) , We have
1 1 (11.5-— 1806c(u,v)logh) To BN n/2N 4\ 2
E((—— wW—a)?) < ! 1+ 0% N“e )
i 25, 9090 < 7y, ( )%

—log¥d

Further,
A > 6_4'4/0z(u, v).

Remark To use the theorem, we must choose 75, 73 to be large enough. Thiscan
be done in afairly standard manner : suppose we want

1

Bl 3 otw) =) <«

Then, note that using Theorem 3, we can choose
4
To = (5N + 2N log(N) + <-)(35 + o(L)N*n +m —2)

Ty = Wgé[\ﬂ(n—l—m —2)/e.

We may estimate A; from the run of the algorithm which potentially fares much
better than the lower bound we have given.

Proof of the Theorem

Let S =3 ,cwl(g(w) —g). Let f: L x I(u,v) = [0 1] besuchthat f(y,w) is
the probability that given YY) = y in step | of the agorithm, we pick w(? = w.
Letting 7 denote the linear transformation such that for each = € P(r,¢), 7(z) = =
gives us the corresponding point in Q)(), (the exact description of  is not needed
here), we have

dz.

- G(z)
f(va) - (2'5)N /zeT(F(w))ﬁC(l/) e'BG(y)

17



Leti(y) = X uerun) f (¥ w)(g(w)—g). [Thisisthe expected valueof g(w()) — g
given Y = 4 where we count aregjected Y as giving usthe value 0]

Let
To+11

>

i=To+1
[Note that the expectation of S given the Y(9) is precisely S’.] Consider the
expectation of /4 with respect to r:
G(z)

S m(wh(y) =X X )-9) = ZEL DO I LG
1 A = SV (F (@) o
— e'BELGZ( g(w) —g) (o) G(z)d %: 3O (g(w)—g) =0

because G/(z) is 1 on al of Q@ which contains 7(F(w)); aso the volume of
7(F(w)) isthesamefor all w € 1.

If we had started the chain in the steady state, the expected value of S’ would be
Ty, m(y)h(y) = 0. Thus as T tends to infinity, the limit of S’/77 is 0. Let
A(y) bethe probability of accepting y. Let A; =3, 7(y)A(y). We also need the
variance of . (wrt ) denoted /1, = 3, 7(y)(h(y))%
ha =Y m(y)(h(y))? < g5 y_ m(y)(A(y))* < g5
Yy Yy

It followsfrom Aldous's Proposition 4.2 (using the fact that his 7. /T, will be less
than 1 here which impliesthat his a(r./7%1) isat most 2(r. /T1)(1+ e71))

B((S)?) < Th (1+ H—TO) 21+ 5

WQOAM

T

where, 7. istheminimumof al = (y),y € L. [Wenotethat Aldouslets T, actualy
be arandom variableto avoid the dependence on negative eigenval ues of the chain.

18



Inour case, we will be ableto get an upper bound on ¢, the second largest absolute
value of an eigenvalue, so thisisnot necessary. A ssimple modification of Aldous's
argument which we do not give here implies the above inequality even though our
To isadeterministic quantity.]

It also follows by similar arguments that

To o1
0 ) MAL (9)

p(W] - B < 73 (14 2 ) AL

T
Consider now S. Recall that
ES|)Y® i =12, . To+T1) =5

GivenY ) ;= 1,2, ... To+ T3, theprocessof producing each (9 isindependent.
ForsomeY E((S —S)?) < B((S—52YW,i=1,2,...To+T1). So, we have

Var(S|Y Wi =1,2,... To+T1) = > Var(g(w)—glY ) < B((g(w?)—g))? < Tig>

So we have, (using theinequality (A + B)? < 1142 + 1.1B?)

E(S?) = E(((S = 58"+ 5)%) <11E((S — §)) + L1E((5)?)

§To 2(1—|—e‘1) 2
<11(1- -
< 1.2(1 — 300c(u, v)logh)T1Ar (1—|— .y ) (—iogd) 96 (20
where we have used alower bound on A; which we derive now. First note that
_ vol(7(F(w)))
A= S |1 (u,v)]|.

Wehavey"; G < e [ G, where T isthe union of cubesin L.

In a sequence of lemmas below, we show that [ G < e**vol(QQ). So, using

Lemma 3,

_4.4VOl(Ur(u)T(F'(w))) _ 6_4.4vol(ul(u7v)F(w)) - 44
vol(QQ) vol(P(r,c)) — alu,v)’

19

A]_Ze




We will now use equations 9 and 10 to argue the conclusion of the Theorem. To
thisend, let

E((ﬁ Zg<w>—§)2 | |W|=s) — ()

weW

and let Pr(|W| = s) = v(s). Then equation 9 gives us

S u(s)(s — Tadr)? < Ty (1 . i_) %

which implies
§To 2(1+ e_l)
_ 2 ~ YV oyesrTe )2
gs v(s)y(s)(s — T1A1)” < ThA1 (1 + W*) (—log0] 96
Now 10 gives

S u(s)y(s)s? < 1.1(1— 3000 log0) Ty A (1 N G_T") 2((_1%096;?95_

s T

Using theinequality 2(s? + (s — T1A1)?) > T7AZ2, we get

1 oo\ 1
< O — _—
ZS:I/(S)’)/(S) < (115 1806ozlog(9)TlAl (1—|— W*) — Iogego,

which gives us the theorem using proposition 3.

Lemma 4 For any real number ¢ (positive, negative or zero), let
K(t)=P(r,c)n{z 2z, =t} and v(t) = Wly_1(K(1)).
For t; < t, < Min(r,,,¢,), we have
v(ty) < (rm — tl)n—z (cn — tl)m—z‘
v(tz) = \rm —t2 cn — 12
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Proof : Forarea n+m —4vector A = Ay, Ao .- A2, Aty A2y - - - A2
(we assume our A vector isindexed as above), define /(¢|\) asthe set of tables «
satisfying

n—2

Ty = Ay 00 = 1,200 = 2tz =T — = 3 A

i=1

m—2
Tip = )\m fori = 1,2,...m—2;:1;m_17n =c,—1— Z )\m
=1

K (t|)) isthe set of tablesin K '(¢) with their last row and column dictated by A.
Let usdenoter,, —t — Z?:_f )\m]‘ by )\m,n—l(t) andc, —t— Z;ri?_z Ain by )\n,m—l(t)-
Define A(t) to bethe set of nonnegative vectors A satisfying :

n—2 m—2

)\m]‘ < Cj forj = 1, 27 ...n—2; )\m,n—l(t) < epot i <15 for: = 1, 27 ...m—2; )‘m—lm < 7r,_1.

Then, we have that A'(¢|)\) is nonempty iff A belongsto A(¢). In general, K(¢|A)
isan (m — 2)(n — 2) dimensional set and by the volume of K'(¢|)), we mean its
(m — 2)(n — 2) dimensional volume. We have

Vol( K (t|X)) = oVOI(P(r(t, A), c(t, X)), where,
r(t,A)i =ri—dipfori=21,2,...m—=2; c(t,\)=c¢j—Ap;foryj=212...n-2

T(t, )\)m—l =Tm-1— )\m—l,n(t); C(t, )\)n—l = Cp-1 — )\m,n—l(t)-

Consider the linear transformation ~ given by

(F(W)j = 2—2As for j = 1,2...0 = 2

m 1

(T(A)in = o _tz)\m fori=21,2...m-—2
Cn—tl
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Itiseasy to seethat 7 isal-1 map of A(t1) into A(tz).

VOI(K (t1)) = /

/\E/\(tl)

VOI (K (12 A))dA = / VOI(K (t]7~2a))| det(r~1)|da

ozE/\(tz)

_ (rm - “)n_z (C” - “)m_z / VOl P(r(t1, 7 a), e(t, 7 1a)))da

T'm — tZ Cp — tZ
Itiseasy to check that r(¢1, 772a) < r(tp, @) and c(ty, 77 1a) < ¢(t2, o). Thisim-
pliesthat theintegrandinthelast integral isbounded aboveby ¢Vol ( P(r(t2, ), c(t2, a))).
This function of course integratesto Vol ( A '(¢2)) completing the proof.

Lemmab For any¢; < O, we have v(¢1) (defined in lemma 4) satisfies

o(t) < €2 (rm — tl)n_z (cn — tl)m_z\blN(QQ(r, &)

Pmn T'm n

where p,,,,, = Min (=, fno),

n—17 m—-1

Proof For ¢, intherange[0 p,..], we have

Vol (K (1)) > (rm - tz)n_z (c” - tz)m_ZVOI(K(tl))

rm_tl cn_tl

2( il )H( n )m_ze‘zvol([((tl)).

rm_tl cn_tl

Integrating this over this range of ¢,, we get the lemma.

Lemmab :

Gy)dy < € G(y)dy < e*vol :
/QQ,W) (y)dy < e /QQW) (y)dy < evol(QQ)
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Proof : Fromthelast lemma, we have for any ¢; < O,

—(m—2) 2
U(tl) S = t1_|_ — 1 €

Vol(QQ).

mn

Now the lemmafollows by integration.

Lemma 7 Let T bethe union of C'(y) over all lcc’sy. Then we have

Gy)dy < 3® G(y)dy.
/T (y)dy <e /ch,c) (y)dy

Proof : We have:
1 4 1 4 .
TCiy: sz:pnym‘ < Ti+ﬁzj:%v® ﬁ;mjyij < Cﬁﬁ;mﬁj yi; > 0}.
(11)

Thisimpliesthat 7' C (1 + 5)QQ’. Note aso that for any y in QQ’, we have
G((1+ A)y) < Gy)e®™ 2 mnCrd; )/ < ((y)el, Thus we have the
lemmausing the last lemma.

Proposition 3

ﬂ_*—l S €5NN2N€4.
Proof The number of statesis at most N2V, It is easy to check that the ratio of

the maximum value of & to the minimum over Icc ’sis at most V4 completing

the proof.

23



Algorithm to estimate the number of contingency tables

Using the sampling agorithm, we will be able to estimate the number of contin-
gency tables in time polynomial in the data and a(w, v). We will only sketch the
method here.

We first estimate by sampling from P(r, ¢) thefollowing ratio :

vol(P(r,c))
VOl (U g,y F(w))

Next, we define a sequence of contingency polytopes P, P, . . ., each obtained
from the previousone by increasing r,,, and ¢; (j = 1-- - n) by {min (%cn, %rm)J
until we have ¢; > S 7t for j = 1---n. Then |I(r, ¢)| = [T77" (”:fl‘l) and
the volume of P(r, c) isread off as the coefficient of 3V in the easily calculated

polynomial (3 x r. 3 x ¢)| (= [125" (+/=/((n — D).

6 Bound on the spectral gap

We refer the reader to Diaconis and Strook [6] or [15] for a discussion of the
eigenvalues of areversible Markov Chain. The second largest absolute value of
such a chain gives us a bound on the “time to converge’ to the steady state as
described in these references. Here, we use Theorem 2 of [15] to bound the
second largest absolute value of our chain. Note that though their theorem does
not explicitly state so, the )\, in that Theorem is the second largest absolute value
of any eigenvalue of the chain. This sectionisatechnical evaluation of the various
guantities needed to plug into the expression for A, in [15]; we do not redefine
these quantities here.

24



We first calculate the diameter of 7' (the largest Euclidean distance between two
pointsin77). To do so, we let
ri

h=A{0j)py=—3t  L=1J) e < - 1

Then, for any y € 7', (using the fact that (y — .41) € QQ’,)

A4
Vi, > oy <N —1)(1+ v) ad
{5:(i5)€l1}
, A4
Vi 2. iy = Nim =11+ 5)-

{i:(i5) € I}
o,

Su8 = 08+ 08 £ N1+ TPl 1m 1)+ = 1%~ )
Sothediameter d = d(T') of T' satisfies

d(T) < V2NYS/(n +m — 2)(1 + %).

For every unit (Ilength) vector v € R, with u;; > 0, let [(u) betheray {y = \u :
A > 0} from the origin along «. Note that the ray intersects 7' in a line segment
(sincey € T iff (0.4)|2.5 y| € QQ’" where floor denotes componentwise floor.)
. Let R = R(u) bethelength of the segment [(u) N QQ'(r,¢) and Ry = Rq(u)
be the length of the segment {(«) N 7. Thenthereexistsani, € {1,2,...m — 1}
such that

Pioj
Z Ruw =T

oraj, € {1,2,...n — 1} such that )°; Ru;;, %= = ¢;,. Assume without loss of

generadlity thefirst option. Since R,u belongsto 7', the vector R,u — 0.4 belongs
to QQ'. So, we also have,

Piog Pioj
Zj: Rluioj N] S i, —|— (04) Z NJ .

J
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Using the fact that 3~ p;; < r;, we get that

4
Ry < R(1+5).

The above impliesthat B; < 2R asrequired by (7) of [[15]].
Also, Ru belongsto Q' implies
RZuij%ngi RZUUIO] < ¢V
j i

which implies by [2]

Pij 0.4r,,
(e St < M, < O

]

Similarly (Ri—R) ¥ ; u; %2 isalsoat most 0.4c, /m—1. Thuse™ (FmR 2., v e
isat most ¢, Thisimpliesthat we may take 1 of (8) of [[15]] to be 25/3.

Also, R1 — R < .4R/N. S0k, of [[15]] isgiven by (since §, the step Size is 0.4
here)

fig < %)(i +V'N) = (50/3)(V'N + o(1)). (12)
Also,
Ko = %Ns(n—l—m—Z)(l—l—o(l)). (13)

We now want to bound (1 + «) of [15]. To this end, we need to prove upper and

lower bounds on
Jeeory) G(2) dz

G(y)oN
wherey isanlcc. Since GG isaconvex function, it is clear that 1 isalower bound

on this ratio. To get an upper bound, we use Heoffding's bounds [18] on the
probability that the sum 3~ p;;[z:; — v;;] deviates from its mean of 0 and (after
some complicated integration) arrive at an upper bound of 1.05¢8/V"°,

Plugging all thisinto the formulafor A;* in Theorem 2 of [[15]], we get :
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Theorem 3

(1-6)"1< [1.2624/N1'5]%[]Y—8(n +m—2)(1+ %)(28/3)

+25V NV + m — 2(1+ é—8N)+2N3/2\/n +m — 2] < (35+0(1)) N4 n+m—2),

For N > 10,n+m > 11, acalculation showsthat the (35+0(1)) may bereplaced
by 36.
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