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1 Introduction

Given positive integers r1; r2; : : : rm and c1; c2; : : : cn, let I(r; c) be the set ofm�n
arrays with nonnegative integer entries and row sums r1; r2; : : : rm respectively and

column sums c1; c2; : : : cn respectively. Elements of I(r; c) are called contingency

tables with these row and column sums.

We consider two related problems on contingency tables. Given r1; r2; : : : rm andc1; c2; : : : cn,

1) Determine jI(r; c)j.
2) Generate randomly an element of I(r; c), each with probability 1=jI(r; c)j.
The counting problem is of combinatorial interest in many contexts. See, for�School of Computer Studies, Leeds University, Leeds, EnglandySchool of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213, USA. Par-
tially supported by NSF Grant CCR 9208597.zSchool of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213, USA. Par-
tially supported by NSF Grant CCR 9208597.
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example, the survey by Diaconis and Gangolli [5]. We show that even in the case

when m or n is 2, this problem is #P hard.

The random sampling problem is of interest in Statistics. In particular, it comes

up centrally in an important new method formulated by Diaconis and Efron [4]

for testing independence in two-way tables. (See also Mehta and Patel [21] for a

more classical test of independence). We show that this problem can be solved

in approximately in polynomial time provided the row and column sums are

sufficiently large, in particular, provided ri 2 Ω(n2m) and cj 2 Ω(m2n). This

then implies under the same conditions, a polynomial time algorithm to solve the

counting problem (1) approximately.

The algorithm we give relies on the random walk approach, and is closely related

to those for volume computation and sampling from log-concave distributions [10,

2, 9, 20, 15, 22].

2 Preliminaries and Notation

The number of rows will always be denoted by m and the number of columns

by n. We will let N denote (n � 1)(m � 1). For convenience, we number the

coordinates of any vector inRnm by a pair of integers (i; j) or just ij where i runs

from 1 through m and j from 1 through n. Suppose u is an m vector of reals (the

row sums) and v is an n vector of reals (the column sums). We defineV (u; v) = fx 2 Rnm :
Xj xij = ui for i = 1; 2; : : :m;

Xi xij = vj for j = 1; 2; : : : ng:
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V (u; v) can be thought of as the set of real m� n matrices with row and column

sums specified by u and v respectively. LetP (u; v) = V (u; v) \ fx : xij � 0 for i = 1; 2; : : :m; j = 1; 2; : : : ng:
We call such a polytope a “contingency polytope”.

Then, I(u; v) is the set of vectors in P (u; v) with all integer coordinates.

Note that the above sets are all trivially empty if
Pi ui 6= Pj vj. So we will assume

throughout that
Pi ui = Pj vj .

We will need another quantity denoted by �(u; v) defined for u; v satisfyingui > 2n8i and vj > 2m8j :�(u; v) = maxi;j  ui + 2nui � 2n; vj + 2mvj � 2m!(n�1)(m�1) :
We will abbreviate �(u; v) to � when u; v are clear from the context. An easy

calculation shows that if ui is Ω(n2m) 8i and vj is Ω(nm2) 8j, then � is O(1).
On input u; v (we assume that ui > 2n8i and vj > 2m8j), our algorithm runs for

time bounded by �(u; v) times a polynomial in n ;m ;maxij(logui; log vj), and(1=�) where �will be an error parameter specifying the desired degree of accuracy.

(See section 5, first paragraph for a description of the input/output specifications

of the algorithm.)

3 Hardness of counting

We will show that exactly counting contingency tables is hard, even in a very

restricted case. We will use the familiar notion of # P-completeness introduced by

Valiant [25].
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Theorem 1 The problem of determining the exact number of contingency tables

with prescribed row and column sums is is #P-complete, even in the 2� n case.

Proof It is easy to see that this problem is in #P. We simply guess mn integers xij
in the range [0; J ] (where J is the sum of the row sums) and check whether they

satisfy the constraints. The number of accepting computations is the number of

tables.

For proving hardness, we proceed as follows : Given positive integersa1; a2; : : : ; an�1; b,
it is shown in [8] that it is #P-hard to compute the (n� 1)-dimensional volume of

the polytope n�1Xj=1

ajyj � b; 0 � yj � 1 (j = 1; 2; : : : ; n� 1):
It follows that it is #P-hard to compute the (n � 1)-dimensional volume of the

polytope nXj=1

ajyj = b; 0 � yj � 1 (j = 1; 2; : : : ; n);
where an = b. Hence, by substituting x1j = ajyj , x2j = aj(1� yj), that it follows

that it is #P-hard to compute the (n � 1)-dimensional volume of the polytopeP (r; c) (with 2 rows and n columns) wherer = (b; n�1Xj=1

aj); c = (a1; : : : ; an�1; b):
Now the number �(r; c) of integer points in P (r; c) is clearly the number of

contingency tables with the required row and column sums. But, for integralr; c, P (r; c) is a polytope with integer vertices. (It is the polytope of a 2 � n
transportation problem [11].) Consider the family of polytopes P (tr; tc) for
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t = 1; 2; : : :. It is well known [12, Chapter 12] that the number of integer

points in P (tr; tc) will be a polynomial in t, the Ehrhart polynomial, of degree(n � 1), the dimension of P (r; c). Moreover the coefficient of tn�1 will be the(n � 1)-dimensional volume of P (r; c). It is also straightforward to show that

the coefficients of this polynomial are of size polynomial in the length of the

description of P (r; c).
Suppose therefore we could count the number of 2 � n contingency tables for

arbitrary r; c. Then we could compute �(r; c) for arbitrary integral r; c. Hence we

could compute �(tr; tc) for t = 1; 2; : : : ; n and thus determine the coefficients of

the Ehrhart polynomial. But this would allow us to compute the volume of P (r; c),
which we have seen is a #P-hard quantity. 2
Remark If both n;m are fixed, we can apply a recent result of Barvinok’s [3]

(that the number of lattice points in a fixed dimensional polytope can be counted

exactly in polynomial time) to compute jI(u; v)j. Diaconis and Efron [4] give an

explicit formula for jI(u; v)j in case n = 2. Their formula has exponentially many

terms (as expected from our hardness result). Mann has a similar formula forn = 3. Sturmfels demonstrates a structural theorem which allows for an effective

counting scheme that runs in polynomial time for n;m fixed.[24] Sturmfels has

used the technique to count 4� 4 contingency tables in the literature. We will, in

later papers, discuss our work counting 4� 4 and 5� 4 contingency tables.
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4 Sampling Contingency tables : Reduction to con-
tinuous sampling

This section reduces the problem of sampling from the discrete set of contingency

tables to the problem of sampling with near-uniform density from a contingency

polytope.

To this end, we first take a natural basis for the lattice of all integer points inV (u; v) and associate with each lattice point a parallelepiped with respect to this

basis. Then we produce a convex set P� which has two properties : a) each

parallelepiped associated with a point in I(u; v) is fully contained in P� and b)

the volume of P� divided by the total volume of the parallelepipeds associated

with points in I(u; v) is at most �(r; c). Now the algorithm is simple : pick a

random point y fromP� with near uniform density (this can be done in polynomial

time), find the lattice point x in whose parallelepiped y lies and accept x if it is inI(u; v) [acceptance occurs with probability at least 1=�(u; v) ]; otherwise, reject

and rerun. The volume of each parallelepiped is the same, so the probability

distribution of the x in I(u; v) is near uniform. This general approach has been

used also for the simpler context of sampling from the 0-1 solutions to a knapsack

problem [13].

[While P� is a convex set and by the general methods, we can sample from it

in polynomial time with near uniform density, it will turn out that P� is also

isomorphic to a contingency polytope. In the next section, we show how to exploit

this to get a better polynomial time algorithm than the general one.]

We will have to build up some geometric facts before producing the P�.
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Let U be the lattice:fx 2 Rnm :
Xj xij = 0 for i = 1; 2; : : :m;

Xi xij = 0 for j = 1; 2; : : : n; xij 2 Zg:
For 1 � i � m� 1 and 1 � j � n � 1, let b(ij) be the vector in Rnm given byb(ij)ij = 1; b(ij)i+1;j = �1; b(ij)i;j+1 = �1; b(ij)i+1;j+1 = 1 and b(ij)kl = 0

for kl other than the 4 above.

Any vector x in V (0; 0) can be expressed as a linear combination of the b(ij)’s as

follows (the reader may check this by direct calculation)x = m�1Xk=1

n�1Xl=1

0@ kXi=1

lXj=1

xij1A b(kl): (1)

It is also easy to check that the b(ij) are all linearly independent. This implies

that the subspace V (0; 0) has dimension (n � 1)(m � 1) and so does the affine

set V (u; v) which is just a translate of V (0; 0). Also, we see that if x is an integer

vector, then the above linear combination has integer coeffients; so, the b(ij) form

a basis of the lattice U .

It is easy to see that if u; v are positive vectors, then the dimension of P (u; v) is

also N . To see this, it suffices to come up with an x 2 Rnm with row and column

sums given by u; v and with each entry xij strictly positive because then we can

add any small real multiples of the b(ij) to x and still remain in P (u; v). Such

an x is easy to obtain : for example, we can choose x11; x12; : : : x1n to satisfy

0 < x1j < min(u1; vj) and summing to u1. Then we subtract this amount from

the column sums and repeat the process on the second row etc.

We will denote by Vol(P (u; v)) the (N dimensional) volume of P (u; v).
Obviously, if either u or v has a non-integer coordinate, then I(u; v) is empty.
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Lemma 1 : If p; q are m vectors of positive reals and s; t are n vectors of positive

reals with q � p and t � s (componentwise), then

Vol(P (q; t)) � Vol(P (p; s)):
Proof By induction on the number of coordinates of (q t) that are strictly greater

than the corresponding coordinates of (p s). After changing row and column

numbers if necessary, assume without loss of generality that q1 � p1 is the least

among all POSITIVE components of (q t) � (p s). After permuting columns if

necessary, we may also assume that we have t1 � s1 > 0. Let P1 = P (p; s). LetP2 be defined byP2 = fx 2 Rnm : x11 � �(q1 � p1);xij � 0 for (ij) 6= (11)g \ V (p; s):
Let p0 be an m�vector defined by p01 = q1; p0i = pi for i = 2; 3; : : :m. Let s0
be defined by s01 = s1 + q1 � p1; s0j = sj for j = 2; 3; : : : n. Denote by P3 the

set P (p0; s0). Then P2 and P3 have the same volume as seen by the isomorphismx11 ! x11 + (q1 � p1). Clearly, P2 contains P1. Also the row sums and column

sums in P3 are no greater than the corresponding row and column sums in (q t).
Applying the inductive assumption to P3 and P (q; t), we have the lemma. 2
Let u; v be fixed and consider V (u; v). LetU(u; v) = V (u; v) \ Znm:
We may partition V (u; v) into fundamental parallelepipeds, one corresponding to

each point of U(u; v). Namely,V (u; v) = [x2U(u;v)fx+Xi;j �ijb(ij) : 0 � �ij < 1 for i = 1; 2; : : :m; j = 1; 2; : : : ng:
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We call fx+Pi;j �ijb(ij) : 0 � �ij < 1 for i = 1; 2; : : :m; j = 1; 2; : : : ng, “the

parallelepiped” associated with x and denote it by F (x).
Claim : For any x 2 I(u; v), and for any y belonging to F (x) we have xij � 2 <yij < xij + 2.

Proof : This follows from the fact that at most four of the b(ij) ’s have a nonzero

entry in each position and two of them have a +1, the other two a -1. 2
Lemma 2 : For nonnegative vectors u 2 Rm and v 2 Rn and any l 2 Rnm, letP (u; v; l) = V (u; v) \ fx 2 Rnm : xij � lijg:
Then,

(i) for any x in I(u; v), we have F (x) � P (u; v;�2) where 2 is the nm-vector of

all 2 ’s.

(ii) P (u; v;+2) � [x2I(u;v)F (x). [P (u; v;�2) will play the role of P� in the

brief description of the algorithm given earlier.]

Proof : (i) Since x is in I(u; v), we have xij � 0 and so for any y 2 F (x), we

have yij � �2 proving (i). For (ii), observe that for any y 2 V (u; v), there is a

unique x 2 U(u; v) such that y 2 F (x). If yij � 2, then we must have xij � 0, so

the corresponding x belongs to I(u; v) as claimed.

Lemma 3 : For u 2 Rm and v 2 Rn with ui > 2n for all i and vj > 2m for allj, we have
Vol([x2I(u;v)F (x))
Vol(P (u; v;�2)) � 1�(u; v):
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Proof : By (ii) of the lemma above, Vol([x2I(u;v)F (x)) is at least Vol(P (u; v;+2)).
But P (u; v;+2) is isomorphic toP (u�2n1; v�2m1) where 1 ’s are vectors of all

1 ’s of suitable dimensions as seen from the substitution x0ij = xij � 2. Similarly,

we have that P (u; v;�2) is isomorphic to P (u + 2n1; v + 2m1). Let � = �1=N .

Consider the set �P (u�2n1; v�2m1) = f�x : x 2 P (u�2n1; v�2m1)g. This

is precisely the set P (�(u � 2n1); �(v � 2m1)). By the definition of �, we have�(ui�2n) � ui+2n8i and �(vj�2m) � vj+2m8j. So by lemma 1, the volume

of �P (u � 2n1; v � 2m1) is at least the volume of P (u + 2n1; v + 2m1). But�P (u�2n1; v�2m1) is a dilation of theN dimensional objectP (u�2n1; v�2m1)
by a factor of � and thus has volume precisely equal to �N = � times the volume

of P (u� 2n1; v � 2m1) completing the proof. 2
Since P (u; v;�2) is isomorphic to P (u + 2n1; v + 2m1), the essential problem

we have is one of sampling from a contingency polytope with uniform density.

Proposition 1 For every x 2 U(r; c), we have volN (F (x)) = 1.

Proof : Note that if z = Pm�1i=1
Pn�1j=1 �ijb(ij), then we have zij = �ij � �i�1;j ��i;j�1 + �i�1;j�1 (where if one of the subscripts is 0, we take the � to be zero

too. Thus for each i, 1 � i � m � 1 and each j, 1 � j � n � 1, the “height”

of the parallelepiped F (x) in the direction of zij perpendicular to the “previous”

((a; b) < (i; j) if a � i and b � j and (a < i or b < j)) coordinates is 1 proving

our proposition. 2
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5 The Algorithm

We now describe the algorithm which given row sums u1; u2; : : : um and column

sums v1; v2; : : : vn, and an error parameter � > 0, draws a multiset W of samples

from I(u; v) (the set of integer contingency tables with the given row and column

sums) with the following property :

if g : I(u; v)! R is any function, then the true mean ḡ of g and the sample meang̃ (defined below) satisfy E((jg̃ � ḡj)2) � �g2
0

whereḡ = Pw2I(u;v) g(w)jI(u; v)j g̃ = Pw2W g(w)jW j g0 = maxw;x2I(u;v) g(w)� g(x):
As stated in the last section, we will first draw samples fromP (u+2n1; v+2m1).
We let r = u+ 2n1 and c = v + 2m1.

We assume that ui > 2n8i and vj > 2m8j throughout this section.

The function g often takes on values 0 or 1. This is so in the motivating application

described by Diaconis and Efron [4] where one wants to estimate the proportion

of contingency tables that have (the so-called) �2 measure of deviation from the

independent greater than the observed table. So, in this case, g0 will be 1 for a

table if its �2 measure is greater than that of the observed, otherwise, it will be

zero. The evaluation of g for a particular table is in general simple as it is in this

case.

At the end of the section, we describe how to use the sampling algorithm to

estimate jI(u; v)j.
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For reasons that will become clear later, we rearrange the rows and columns so

that r1; r2; : : : rm�1 � rm c1; c2; : : : cn�1 � cn: (2)

We assume the above holds from now on. Anm�n table x in P (r; c) is obviously

specified completely by its entries in all but the last row and column. From this,

it is easy to see that P (r; c) is isomorphic to the polytope Q(r; c) in RN (recall

the notation N = (m� 1)(n � 1)) which is defined as the set of x satisfying the

following inequalities :n�1Xj=1

xij � ri8i m�1Xi=1

xij � cj8j m�1Xi=1

n�1Xj=1

xij � m�1Xi=1

ri � cn xij � 0:
In the above, as well as in the rest of the section, i will run through 1; 2; : : :m� 1

and j will run through 1; 2; : : : n� 1 unless otherwise specified.

The algorithm will actually pick points in Q(r; c) with near uniform density. To

do so, the algorithm first scales each coordinate so that Q(r; c) becomes “well-

rounded”. Let�ij = Min ( rin � 1
; cjm� 1

) for i = 1; 2; : : :m� 1 and j = 1; 2; : : : n� 1: (3)

The scaling is given byyij = N�ij xij for i = 1; 2; : : :m� 1 and j = 1; 2; : : : n � 1: (4)

This transformation transforms the polytopeQ(r; c) to a polytopeQQ = QQ(r; c)
“in y space”. Note thatQQ(r; c) is the set of y that satisfy the following constraints

:
1N Xj �ijyij � ri8i 1N Xi �ijyij � cj8j (5)
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1N Xi;j �ijyij �Xi ri � cn yij � 0:
Instead of working in QQ(r; c), the algorithm will work with a larger convex set.

To describe the set, first consider the convex set P 0(r; c) obtained from P (r; c) by

discarding the constraint xmn � 0. The corresponding set Q0(r; c) in N space is

given by upper bounds on the row and column sums and nonnegativity constraints.

The scaling above transforms Q0(r; c) to the following set QQ0(r; c) :QQ0(r; c) = fy :
1N Xj �ijyij � ri8i 1N Xi �ijyij � cj8j yij � 0g (6)

We will impose the following log-concave function F : P 0(r; c)! R+ :F (x) = Min (1; eMxmn) where M = 2(n� 1rm + m� 1cn ) (7)

which is 1 on P (r; c) and falls off exponentially outside. The corresponding

function on QQ0 is given by :G(y) = Min

 
1; eM� 1N Pi;j �ijyij�Pi ri+cn�! : (8)

We call a cube of the form fy : 0:4sij � yij < 0:4(sij + 1)g in y space wheresij are all integers a “lattice cube” (it is a cube of side 0.4); its center p wherepij = 0:4sij + 0:2 will be called a lattice cube center (lcc). Let L be the set of

lattice cubes that intersect QQ0(r; c). We will interchangeably use L to denote

the set of lcc’s of such cubes. (Note that the lcc itself may not be in QQ0.) If y
is an lcc, we denote by C(y) the lattice cube of which it is the center. Note that

for a particular lcc y, it is easy to check whether it is in L - we just round down

all coordinates (to an integer multiple of 0.4) and check if the point so obtained

is in QQ0. In our algorithm, each step will only modify one coordinate of y; in
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this case, by keeping running row and column sums, we can check in O(1) time

whether the new y is in L.

A simple calculation shows :

Proposition 2 : For any lcc y and any z 2 C(y), we have e�0:8G(y) � G(z) �e0:8G(y).
Now we are ready to present the algorithm. There are two steps of the algorithm of

which the first is the more important. Some details of execution of the algorithm

are given after the algorithm. In the second step, we may reject in one of three

places. If we do so, then, this trial does not produce a final sample.
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The Algorithm

The first paragraph of this section describes the input / output behavior of the

algorithm. See Remark following the Theorem for the choice of T0; T1.

I. Let T0; T1 � 1. Their values are to determined by the accuracy needed.

Run the random walk Y (1); Y (2); : : : Y (T0+T1) withL as state space described below

for T0 + T1 steps starting at any state of L.

II. for i = T0 + 1 to i = T0 + T1 do the following :

a. Pick Z(i) with uniform density from C(Y (i)). Reject with probability 1 �G(Z(i))e:8G(Y (i)) . [Reject means end the execution for this i.]
b. Reject if Z(i) is not in QQ(r; c).
c. Let p(i) be the point in P (r; c) corresponding to Z(i). If p(i) is in a F (w) for

some w 2 I(u; v), then add w(i) = w to the multiset W of samples to be output;

otherwise reject. 2
Random walk for step I

Step I is a random walk on L. Two lcc ’s in L will be called “adjacent” if they

differ in one coordinate by 0.4 and are equal on all the other coordinates. The

transition probabilities for the random walk for step I are given by :

Pr(y ! y0) = 1
2N Min (1; G(y0)G(y) ) for y; y0 adjacent lcc ’s in L

Pr(y ! y0) = 0 for y; y0 not adjacent and
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Pr(y ! y) = 1� Xy02Lnfyg Pr(y ! y0):
This is an irreducible time-reversible Metropolis Markov Chain and from the

identity G(y) Pr(y ! y0) = G(y0) Pr(y0 ! y);
it follows that the steady state probabilities, �, exist and are proportional to G(�).
An execution of the random walk produces Y (i); i = 1; 2; : : : where Y (i+1) is

chosen from Y (i) according to the transition probababilities.

In the next section, we will use the results of Frieze, Kannan, Polson [[15]] to

show that the second largest absolute value of an eigenvalue of the Markov Chain

(we denote this quantity by �) satisfies (see Theorem 3):(1� �)�1 � N 4(n +m� 2)(35 + o(1));
where the o(1) term goes to zero as n + m;N ! 1. As pointed out there, forN � 10 and n+m � 11, we have (1� �)�1 � 36N4(n +m� 2). The quantity

1� � is called the “spectral gap”.

The following theorem is proved using a result of Aldous [[1]]. It involves a

quantityA1 which is the limiting probability of acceptance in the above algorithm.

A sequence of lemmas (4-7) is then used to bound A1 from below. This lower

bound may be just plugged into the Theorem. See Remark below for a more

practical way to estimate A1.

Theorem 2 The multiset of samples W produced by the algorithm satisfies :

if g : I(u; v) ! R is any function, with g0 = maxw;x2I(u;v) g(w) � g(x), and the
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mean ḡ = Pw2I(u;v) g(w)jI(u;v)j , we haveE(( 1jW j Xw2W g(w)�ḡ)2) � 1T1A1

(11:5� 1806�(u; v) log �)� log � �
1 + �T0e5NN 2Ne4

� g2
0 :

Further, A1 � e�4:4=�(u; v):
Remark To use the theorem, we must choose T0; T1 to be large enough. This can

be done in a fairly standard manner : suppose we wantE(( 1jW j Xw2W g(w)� ḡ)2)) � �:
Then, note that using Theorem 3, we can chooseT0 = (5N + 2N log(N) + 4N )(35 + o(1))N 4(n+m� 2)T1 = (840 + o(1))A1

g2
0N4(n+m� 2)=�:

We may estimate A1 from the run of the algorithm which potentially fares much

better than the lower bound we have given.

Proof of the Theorem

Let S = Pw2W (g(w) � ḡ). Let f : L � I(u; v) ! [0 1] be such that f(y;w) is

the probability that given Y (i) = y in step I of the algorithm, we pick w(i) = w.

Letting � denote the linear transformation such that for each x 2 P (r; c), � (x) = z
gives us the corresponding point in QQ, (the exact description of � is not needed

here), we have f(y;w) = (2:5)N Zz2�(F (w))\C(y) G(z)e:8G(y)dz:
17



Let h(y) = Pw2I(u;v) f(y;w)(g(w)� ḡ). [This is the expected value of g(w(i))� ḡ
given Y (i) = y where we count a rejected Y (i) as giving us the value 0.]

Let S0 = T0+T1Xi=T0+1

h(Y (i)):
[Note that the expectation of S given the Y (i) is precisely S 0.] Consider the

expectation of h with respect to �:Xy �(y)h(y) =Xy Xw �(y)f(y;w)(g(w)�ḡ) =Xy G(y)PLGXw Zz2�(F (w))\C(y) G(z)e:8G(y)(g(w)�ḡ)dz= 1e:8PLGXw (g(w)� ḡ) Zz2�(F (w))G(z)dz =Xw vol(� (F (w)))e:8PLG (g(w)� ḡ) = 0

because G(z) is 1 on all of QQ which contains � (F (w)); also the volume of� (F (w)) is the same for all w 2 I .

If we had started the chain in the steady state, the expected value of S0 would beT1
Py �(y)h(y) = 0. Thus as T1 tends to infinity, the limit of S0=T1 is 0. LetA(y) be the probability of accepting y. Let A1 =Py �(y)A(y). We also need the

variance of h (wrt �) denoted h2 = Py �(y)(h(y))2.h2 =Xy �(y)(h(y))2 � g2
0

Xy �(y)(A(y))2 � g2
0A1

It follows from Aldous’s Proposition 4.2 (using the fact that his �e=T1 will be less

than 1 here which implies that his �(�e=T1) is at most 2(�e=T1)(1 + e�1))E((S0)2) � T1

 
1 + �T0�� ! 2(1 + e�1)(� log �) g2

0A1;
where, �� is the minimum of all �(y); y 2 L. [We note that Aldous lets T0 actually

be a random variable to avoid the dependence on negative eigenvalues of the chain.
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In our case, we will be able to get an upper bound on �, the second largest absolute

value of an eigenvalue, so this is not necessary. A simple modification of Aldous’s

argument which we do not give here implies the above inequality even though ourT0 is a deterministic quantity.]

It also follows by similar arguments thatE((jW j � T1A1)2) � T1

 
1 + �T0�� ! 2(1 + e�1)(� log �) A1: (9)

Consider now S. Recall thatE(SjY (i); i = 1; 2; : : : T0 + T1) = S0:
Given Y (i); i = 1; 2; : : : T0+T1, the process of producing eachw(i) is independent.

For some Y E((S�S0)2) � E((S�S0)2jY (i); i = 1; 2; : : : T0 +T1). So, we have

Var(SjY (i); i = 1; 2; : : : T0+T1) =Xi Var(g(w(i))�ḡjY (i)) � E((g(w(i))�ḡ))2 � T1g2o:
So we have, (using the inequality (A+B)2 � 11A2 + 1:1B2)E(S2) = E(((S � S0) + S0)2) � 11E((S � S0)2) + 1:1E((S0)2)� 1:1(1� 300�(u; v) log �)T1A1

 
1 + �T0�� ! 2(1 + e�1)(� log �) g2

0 ; (10)

where we have used a lower bound on A1 which we derive now. First note thatA1 = vol(� (F (w)))e:8PLG jI(u; v)j:
We have

PLG � e:2 RT G, where T is the union of cubes in L.

In a sequence of lemmas below, we show that
RT G � e4:4vol(QQ). So, using

Lemma 3,A1 � e�4:4 vol([I(u;v)� (F (w)))
vol(QQ) = e�4:4 vol([I(u;v)F (w))

vol(P (r; c)) � e�4:4�(u; v):
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We will now use equations 9 and 10 to argue the conclusion of the Theorem. To

this end, let E 0@ 1jW j Xw2W g(w)� ḡ!2 j jW j = s1A = 
(s)
and let Pr(jW j = s) = �(s). Then equation 9 gives usXs �(s)(s� T1A1)2 � T1A1

 
1 + �T0�� ! 2(1 + e�1)(� log �)

which impliesXs �(s)
(s)(s� T1A1)2 � T1A1

 
1 + �T0�� ! 2(1 + e�1)(� log �) g2

0

Now 10 givesXs �(s)
(s)s2 � 1:1(1� 300� log �)T1A1

 
1 + �T0�� ! 2(1 + e�1)(� log �) g2

0 :
Using the inequality 2(s2 + (s� T1A1)2) � T 2

1A2
1, we getXs �(s)
(s) � (11:5� 1806� log �) 1T1A1

 
1 + �T0�� ! 1� log �g2

0 ;
which gives us the theorem using proposition 3. 2
Lemma 4 For any real number t (positive, negative or zero), letK(t) = P 0(r; c) \ fx : xmn = tg and v(t) = VolN�1(K(t)):
For t1 � t2 < Min (rm; cn), we havev(t1)v(t2) � �rm � t1rm � t2

�n�2 �cn � t1cn � t2

�m�2 :
20



Proof : For a real n+m�4 vector � = �1n; �2n : : : �m�2;n; �m1; �m2; : : : �m;n�2

(we assume our � vector is indexed as above), define K(tj�) as the set of tables x
satisfyingxmj = �mj for j = 1; 2; : : : n� 2;xm;n�1 = rm � t� n�2Xj=1

�mj ;xin = �in for i = 1; 2; : : :m� 2;xm�1;n = cn � t� m�2Xi=1

�in:K(tj�) is the set of tables in K(t) with their last row and column dictated by �.

Let us denote rm�t�Pn�2j=1 �mj by �m;n�1(t) and cn�t�Pm�2i=1 �in by �n;m�1(t).
Define Λ(t) to be the set of nonnegative vectors � satisfying :n�2Xj=1

�mj + t � rm;
m�2Xi=1

�in + t � cn;�mj � cj for j = 1; 2; : : : n�2;�m;n�1(t) � cn�1;�in � ri for i = 1; 2; : : :m�2;�m�1;n � rm�1:
Then, we have that K(tj�) is nonempty iff � belongs to Λ(t). In general, K(tj�)
is an (m � 2)(n � 2) dimensional set and by the volume of K(tj�), we mean its(m� 2)(n � 2) dimensional volume. We have

Vol(K(tj�)) = �Vol(P (r(t; �); c(t; �))); where,r(t; �)i = ri��in for i = 1; 2; : : :m�2; c(t; �) = cj��mj for j = 1; 2; : : : n�2;r(t; �)m�1 = rm�1 � �m�1;n(t); c(t; �)n�1 = cn�1 � �m;n�1(t):
Consider the linear transformation � given by(� (�))mj = rm � t2rm � t1

�mj for j = 1; 2 : : : n� 2;(� (�))in = cn � t2cn � t1
�in for i = 1; 2 : : :m� 2:
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It is easy to see that � is a 1-1 map of Λ(t1) into Λ(t2).
Vol(K(t1)) = Z�2Λ(t1) Vol(K(t1j�))d� = Z�2Λ(t2) Vol(K(t1j��1�))j det(��1)jd�= �rm � t1rm � t2

�n�2 �cn � t1cn � t2

�m�2 Z� �Vol(P (r(t1; ��1�); c(t1; ��1�)))d�:
It is easy to check that r(t1; ��1�) � r(t2; �) and c(t1; ��1�) � c(t2; �). This im-

plies that the integrand in the last integral is bounded above by�Vol(P (r(t2; �); c(t2; �))).
This function of course integrates to Vol(K(t2)) completing the proof. 2
Lemma 5 For any t1 < 0, we have v(t1) (defined in lemma 4) satisfiesv(t1) � e2�mn �rm � t1rm �n�2 �cn � t1cn �m�2

VolN (QQ(r; c))
where �mn = Min ( rmn�1 ; cmm�1).
Proof For t2 in the range [0 �mn], we have

Vol(K(t2)) � �rm � t2rm � t1

�n�2 �cn � t2cn � t1

�m�2

Vol(K(t1))� � rmrm � t1

�n�2 � cncn � t1

�m�2 e�2vol(K(t1)):
Integrating this over this range of t2, we get the lemma.

Lemma 6 : ZQQ0(r;c)G(y)dy � e2
ZQQ(r;c)G(y)dy � e2vol(QQ):
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Proof : From the last lemma, we have for any t1 < 0,v(t1) � e�(n�2)t1rm +�(m�2)t1cn e2�mnVol(QQ):
Now the lemma follows by integration. 2
Lemma 7 Let T be the union of C(y) over all lcc ’s y. Then we haveZT G(y)dy � e3:6 ZQQ(r;c)G(y)dy:
Proof : We have :T � fy :

1N Xj �ijyij � ri+ :4N Xj �ij8i 1N Xi �ijyij � cj+ :4N Xi �ij8j yij � 0g:
(11)

This implies that T � (1 + :4N )QQ0. Note also that for any y in QQ0, we haveG((1 + :4N )y) � G(y)e0:4MPij min(Pi ri;Pj cj)=(N 2) � G(y)e1:6. Thus we have the

lemma using the last lemma. 2
Proposition 3 ��1� � e5NN 2Ne4:
Proof The number of states is at most N2N . It is easy to check that the ratio of

the maximum value of G to the minimum over lcc ’s is at most e5N+4 completing

the proof. 2
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Algorithm to estimate the number of contingency tables

Using the sampling algorithm, we will be able to estimate the number of contin-

gency tables in time polynomial in the data and �(u; v). We will only sketch the

method here.

We first estimate by sampling from P (r; c) the following ratio :

vol(P (r; c))
vol([w2I(u;v)F (w)) :

Next, we define a sequence of contingency polytopes P1; P2; : : :, each obtained

from the previous one by increasing rm and cj (j = 1 � � �n) by
j
min

�
1mcn; 1nrm�k

until we have cj � Pm�1i=1 ri for j = 1 � � �n. Then jI(r; c)j = Qm�1i=1

�ri+n�1n�1

�
and

the volume of P (r; c) is read off as the coefficient of �N in the easily calculated

polynomial jI(� � r; � � c)j (= Qm�1i=1

�rn�1i =((n� 1)!)�).

6 Bound on the spectral gap

We refer the reader to Diaconis and Strook [6] or [15] for a discussion of the

eigenvalues of a reversible Markov Chain. The second largest absolute value of

such a chain gives us a bound on the “time to converge” to the steady state as

described in these references. Here, we use Theorem 2 of [15] to bound the

second largest absolute value of our chain. Note that though their theorem does

not explicitly state so, the �2 in that Theorem is the second largest absolute value

of any eigenvalue of the chain. This section is a technical evaluation of the various

quantities needed to plug into the expression for �2 in [15]; we do not redefine

these quantities here.
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We first calculate the diameter of T (the largest Euclidean distance between two

points in T ). To do so, we letI1 = f(ij) : �ij = rin� 1
g I2 = f(ij) : �ij < rin� 1

g:
Then, for any y 2 T , (using the fact that (y � :41) 2 QQ0,)8i; Xfj:(ij)2I1g yij � N(n� 1)(1 + :4N ) and8j; Xfi:(ij)2I2g yij � N(m� 1)(1 + :4N ):
So,Xij y2ij =XI1

y2ij +XI2

y2ij � N 2(1 + :4N )2[(n� 1)2(m� 1) + (m� 1)2(n� 1)]:
So the diameter d = d(T ) of T satisfiesd(T ) � p

2N1:5q(n +m� 2)(1 + :4N ):
For every unit (length) vector u 2 RN , with uij � 0, let l(u) be the ray fy = �u :� � 0g from the origin along u. Note that the ray intersects T in a line segment

(since y 2 T iff (0:4)b2:5 yc 2 QQ0 where floor denotes componentwise floor.)

. Let R = R(u) be the length of the segment l(u) \ QQ0(r; c) and R1 = R1(u)
be the length of the segment l(u) \ T . Then there exists an io 2 f1; 2; : : :m� 1g
such that Xj Ruioj �iojN = rio
or a jo 2 f1; 2; : : : n � 1g such that

PiRuijo �ijoN = cjo . Assume without loss of

generality the first option. Since R1u belongs to T , the vector R1u� 0:4 belongs

to QQ0. So, we also have,Xj R1uioj �iojN � rio + (0:4)Xj �iojN :
25



Using the fact that
Pj �ij � ri, we get thatR1 � R(1 + :4N ):

The above implies that R1 � 2R as required by (7) of [[15]].

Also, Ru belongs to QQ0 impliesRXj uij �ijN � ri8i RXi uij �ijN � cj8j
which implies by [2](R1 �R)Xi;j uij �ijN � R1 �RR Xi ri � 0:4rmn� 1

:
Similarly (R1�R)Pi;j uij �ijN is also at most 0:4cn=m�1. Thus eM(R1�R)Pi;j uij �ijN
is at most e1:6. This implies that we may take �1 of (8) of [[15]] to be 25=3.

Also, R1 � R � :4R=N . So �2 of [[15]] is given by (since �, the step size is 0.4

here) �2 � 50
3
(RN +pN) = (50=3)(pN + o(1)): (12)

Also, �0 = 1:8N3(n+m� 2)(1 + o(1)): (13)

We now want to bound (1 + �) of [15]. To this end, we need to prove upper and

lower bounds on Rz2C(y)G(z) dzG(y)�N
where y is an lcc. Since G is a convex function, it is clear that 1 is a lower bound

on this ratio. To get an upper bound, we use Heoffding’s bounds [18] on the

probability that the sum
Pij �ij [zij � yij] deviates from its mean of 0 and (after

some complicated integration) arrive at an upper bound of 1:05e8=N 1:5
.

Plugging all this into the formula for ��1
2 in Theorem 2 of [[15]], we get :
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Theorem 3(1� �)�1 � [1:2e24=N 1:5]N:4 [N 3:8 (n+m� 2)(1 + 1:5N )(28=3)+25
pNpn+m� 2(1+ :8

3N )+2N3=2
pn+m� 2] � (35+o(1))N 4(n+m�2);

ForN � 10; n+m � 11, a calculation shows that the (35+o(1)) may be replaced

by 36.
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